Past Issue

Volume 12, Number 3, Oct-Dec 2018, Pages: 257-262

Anti-Oxidative and Anti-Apoptotic Effects of Apigenin on Number of Viable and Apoptotic Blastomeres, Zona Pellucida Thickness and Hatching Rate of Mouse Embryos

Manouchehr Safari, Ph.D, Houman Parsaie, M.Sc., Hamid Reza Sameni, Ph.D., Mohammad Reza Aldaghi, Ph.D., Sam Zarbakhsh, Ph.D., *,
Nervous System Stem Cells Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
*Corresponding Address: P.O.Box 35198-99951 Nervous System Stem Cells Research Center Semnan University of Medical Sciences Semnan Iran



Apigenin is a plant-derived compound belonging to the flavonoids category and bears protective effects on different cells. The aim of this study was to evaluate the effect of apigenin on the number of viable and apoptotic blastomeres, the zona pellucida (ZP) thickness and hatching rate of pre-implantation mouse embryos exposed to H2O2 and actinomycin D.

Materials and Methods

In this experimental study, 420 two-cell embryos were randomly divided into six groups: i. Control, ii. Apigenin, iii. H2O2 , iv. Apigenin+H2O2 , v. Actinomycin D, and vi. Apigenin+Actinomycin D. The percentage of blastocysts and hatched blastocysts was calculated. Blastocyst ZP thickness was also measured. In addition, viable blastomeres quantity was counted by Hoechst and propidium iodide staining and the number of apoptotic blastomeres was counted by TUNEL assay.


The results of viable and apoptotic blastomeres quantity, the ZP thickness, and the percentage of blastocysts and hatched blastocysts were significantly more favorable in the apigenin group, rather than the control group (P<0.05). The results of the apigenin+H2O2 group were significantly more favorable than the H2O2 group (P<0.05); and the results of apigenin+actinomycin D group were significantly more favorable than actinomycin D group (P<0.05).


The results suggest that apigenin may protect mouse embryos against H2O2 and actinomycin D. So that it increases the number of viable blastomeres and decreases the number of apoptotic blastomeres, which may cause expanding the blastocysts, thinning of the ZP thickness and increasing the rate of hatching in mouse embryos.